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Linear Compartmental Models

M = (G , In, Out, Leak) where In,Out, Leak ⊆ V

Example

1 2 3

a21 a32

a23

in

a01 a02 a03

M = (G , {1}, {2}, {1, 2, 3})
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Linear Compartmental Model ODE’s

Example

1 2 3
a21 a32

a23

in

a01 a02 a03

M = (G , {1}, {2}, {1, 2, 3})

ẋ1(t) = −(a01 + a21)x1(t) +u1(t)
ẋ2(t) = a21x1(t) −(a02 + a32)x2(t) +a23x3(t)
ẋ3(t) = a32x2(t) −(a03 + a23)x3(t)

with
y2(t) = x2(t).
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Linear Compartmental Model ODE’s

Example

1 2 3
a21 a32

a23

in

a01 a02 a03

M = (G , {1}, {2}, {1, 2, 3})

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

−a01 − a21 0 0
a21 −a02 − a32 a23

0 a32 −a03 − a23


︸ ︷︷ ︸

compartmental matrix

x1(t)
x2(t)
x3(t)

 +

u1(t)
0
0



with
y2(t) = x2(t).
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LCM Input/Output Equation

Eliminate the state variables xi (t) from the system of ODE’s to get
an input/output equation

Example

1 2 3
a21 a32

a23

in

a01 a02 a03

M = (G , {1}, {2},V )

A =

−a01 − a21 0 0
a21 −a02 − a32 a23

0 a32 −a03 − a23



Input/Output Equation:

y
(3)
2 + (a01 + a02 + a03 + a21 + a23 + a32)ÿ2 + (a01a02 + a01a03 + a02a03

+a02a21 + a03a21 + a01a23 + a02a23 + a21a23 + a01a32 + a03a32 + a21a32)ẏ2

+(a01a02a03 + a02a03a21 + a01a02a23 + a02a21a23 + a01a03a32 + a03a21a32)y2 = (a21)u̇1 + (a21a03 + a21a23)u1
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LCM Reparameterized Input/Output Equation

When every compartment has a leak, reparameterize the “diagonal
elements” as aii

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

A =

a11 0 0
a21 a22 a23

0 a32 a33



Input/Output Equation:

y
(3)
2 + (−a11 − a22 − a33)ÿ2 + (a11a22 − a23a32 + a11a33 + a22a33)ẏ2 + (a11a23a32 − a11a22a33)y2

= (a21)u̇1 + (−a21a33)u1
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Identifiability

Definition

Let φ be the coefficient map from the parameter space of a model to
the coefficient space of its input/output equation

A model is said to be generically locally identifiable if, outside a set of
measure zero, every point in the parameter space has an open
neighborhood U for which φ|U is one-to-one

Note: Look at the Jacobian of φ for local identifiability!

Proposition (Sufficient condition for unidentifiability)

A model M = (G , In,Out, Leak) is unidentifiable if

# parameters > # coefficients.
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Input/Output Coefficient Map

Proposition (Meshkat, Sullivant, Eisenberg)

Let M = (G , In, {j},V ) such that G is output connectable. The
coefficient map factors through the cycles, self-cycles, and paths from
input to output.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

φ :


a11

a22

a33

a21

a23

a32

 7→


−a11 − a22 − a33

a11a22 − a23a32 + a11a33 + a22a33

a11a23a32 − a11a22a33

a21

−a21a33


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Identifiable Path/Cycle Model Motivating Example

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

y
(3)
2 + (−a11 − a22 − a33)ÿ2

+ (a11a22 − a23a32 + a11a33 + a22a33)ẏ2

+ (a11a23a32 − a11a22a33)y2

= (a21)u̇1 + (−a21a33)u1

The model M = (G , {1}, {2},V ) is not identifiable:

# parameters = 6
# coefficients = 5

Maybe we can recover combinations of parameters

Definition

For a function φ : R|E |+|Leak| → Rk , a function f : R|E |+|Leak| → R is
locally identifiable from φ if there is a finitely multivalued function
ψ : Rk → R such that ψ ◦ φ = f .
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Identifiable Path/Cycle Model

Definition

M = (G , In,Out,V ) is an identifiable path/cycle model if

all of the independent monomial cycles and monomial paths from
input to output are locally identifiable, and

each parameter is contained in such a cycle or path

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

This model is an identifiable
path/cycle model with identifiable
functions

a11, a22, a33, a21, a23a32.

y
(3)
2 + (−a11 − a22 − a33)ÿ2 + (a11a22 − a23a32 + a11a33 + a22a33)ẏ2 + (a11a23a32 − a11a22a33)y2

= (a21)u̇1 + (−a21a33)u1
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Graph Definitions

Definition

G is inductively strongly connected w.r.t vertex 1 if each of the induced
subgraphs G{1,...,i} is strongly connected for i = 1, . . . , n for some ordering
of the vertices

Example

1 2 34
a21
a12

a32
a23

a14
a41

G = G{1,2,3,4}

G is inductively strongly connected w.r.t. 1 by the order 1, 2, 3, 4.
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Graph Definitions

Definition

G is inductively strongly connected w.r.t vertex 1 if each of the induced
subgraphs G{1,...,i} is strongly connected for i = 1, . . . , n for some ordering
of the vertices

Example

1 2 34
a21
a12

a32
a23

a14
a41

G{1,2,3}

G is inductively strongly connected w.r.t. 1 by the order 1, 2, 3, 4.
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Graph Definitions

Definition

G is inductively strongly connected w.r.t vertex 1 if each of the induced
subgraphs G{1,...,i} is strongly connected for i = 1, . . . , n for some ordering
of the vertices

Example

1 2 34
a21
a12

a32
a23

a14
a41

G{1,2}

G is inductively strongly connected w.r.t 1 by the order 1, 2, 3, 4.
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Graph Definitions

Definition

G is inductively strongly connected w.r.t vertex 1 if each of the induced
subgraphs G{1,...,i} is strongly connected for i = 1, . . . , n for some ordering
of the vertices

Example

1 2 34
a21
a12

a32
a23

a14
a41

G{1}

G is inductively strongly connected w.r.t 1 by the order 1, 2, 3, 4.
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Graph Definitions ctd.

Definition

G is strongly input-output connected (w.r.t In,Out ⊆ V ) if

it is connected

and every edge is contained in a cycle or path from input to output

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

G is strongly input-output connected since every edge is part of a cycle or
a path from 1 to 2.
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , In,Out,V ) such that

(i) G is strongly input-output connected and |Out| = 1 or

(ii) G is strongly connected and |In| = 1.

If the image of the coefficient map φ has dimension |E |+ |In ∪ Out|, then
the model is an identifiable path/cycle model.

Proof idea:

φParam. Space
R|V |+|E |

Coeff. Space
R|E |+|In∪Out|

Path/Cycle Space
R|E |+|In∪Out|

f ψ

Factor the coefficient map through the
“path/cycle space” which as a result of (i)
and/or (ii) has dimension |E |+ |In ∪ Out|

ψ must be invertible if
dim(im(φ)) = |E|+ |In ∪Out|, so
f = ψ−1 ◦ φ, so f is ident. from φ
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

G is strongly input-output
connected as it is connected and
the edges are either in a cycle or
path from input to output
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

|E | = |V | = 3 and dist(1, 2) = 1 so
|E | = 2|V | − dist(1, 2)− 2

3 = 2(3)− 1− 2.
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

There is no path from 2 to 1.
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

With the added edge 2→ 1, G
becomes inductively strongly
connected via the ordering 1, 2, 3.
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Sufficient Condition for Identifiable Path/Cycle Model

Theorem (B., Meshkat)

Let M = (G , {i}, {j},V ) such that

G strongly input-output connected

|E | = 2|V | − dist(i, j)− 2

G has no path from j to i

G becomes inductively strongly connected by adding an edge from j
to i

then M is an identifiable path/cycle model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

Thus, M is an identifiable
path/cycle model!
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Identifiable from Identifiable Path/Cycle

Theorem (B., Meshkat)

For M = (G , In,Out,V ) and M̃ = (G , In,Out, L) with L = In ∪ Out and
one of

G strongly input-output connected and |Out| = 1 or

G strongly connected and |In| = 1

then M̃ is locally identifiable if and only if M is an identifiable path/cycle
model.

Example

1 2 3
a21 a32

a23

in

a11 a22 a33

M = (G , {1}, {2},V )

1 2 3
a21 a32

a23

in

a11 a22

M̃ = (G , {1}, {2}, {1, 2})

As M is an identifiable path/cycle model, then M̃ is identifiable.
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Why Identifiable Path/Cycle Models?

Previous work has focused on models M = (G , {i}, {i}, Leak)

Theorem (Meshkat, Sullivant)

For M = (G , {i}, {i},V ) an identifiable cycle model, there exists an
identifiable scaling reparameterization in terms of monomial functions of
the original parameters.

This work focuses on models M = (G , {i}, {j}, Leak) where i 6= j ,
and generalizations with more than one input or output

Conjecture

For identifiable path/cycle model M = (G , {i}, {j},V ), there exists an
identifiable scaling reparameterization in terms of monomial functions of
the original parameters.
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Classification of Identifiable Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant)

A (bidirectional) tree model M = (G , {i}, {j}, Leak) is generically locally
identifiable if and only if dist(i, j) ≤ 1 and |Leak| ≤ 1.

Example

1 2 . . . n
a12 a23 an−1,n

a21 a32 an,n−1

Catenary

1

2

3

...

n

a21
a12

a13
a31

a1n

an1

Mammillary
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Classification of Identifiable Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant)

A (bidirectional) tree model M = (G , {i}, {j}, Leak) is generically locally
identifiable if and only if dist(i, j) ≤ 1 and |Leak| ≤ 1.

Proof idea:

(Necessary) Show that if |Leak| > 1 or dist(i, j) > 1, then M cannot
be identifiable as # parameters > #coefficients

(Sufficient) Start with a known identifiable model with i = j and
perform “moves” which retain identifiability to inductively generate
every tree model with dist(i, j) ≤ 1 and |Leak| ≤ 1.
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