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|dentifiability Analysis: A two part problem

Structural identifiability is the problem of determining if the parameters of
a model can be recovered from the measurable variables of the model
under perfect conditions.

Note: Structural identifiability is a necessary condition for practical
identifiability.

@ Structural identifiability can be carried out in two phases:

1. Find the input/output equation[s] of the ODE system in terms of
observable variables

2. Determine injectivity of coefficient map defined by input/output
equation[s] often via the computing the rank of the Jacobian
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LCM Motivating Example
@ @ @ 1 := Good Golfers
2 := Decent Golfers
3:

:= Bad Golfers
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LCM Motivating Example

5 5 a03
@ 12 @ 23 @ 1 := Good Golfers
an aso 2 := Decent Golfers
3:

:= Bad Golfers
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LCM Motivating Example

a03

@ 312 @ 923 @ 1 := Good Golfers
an aso 2 := Decent Golfers
_ 3 := Bad Golfers
|n
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LCM Motivating Example

a03

@ a; @ a23 @ M = (G, In, Out, Leak)
ani a32

= (Cats, {3}, {1}, {3}).

|n
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LCM Motivating Example

a03

@ a; @ a23 @ M = (G, In, Out, Leak)
ani a32

= (Cats, {3}, {1}, {3}).

|n

ODE in terms of concentrations x;(t), input usz(t), and output y;(t):

Xl(t) = —321X1(1.') +312X2(1.')

X(t) = anxi(t) —(ar2 + as2)x(t) +ax3x3(t)

x3(t) = azx2(t) —(ao3 + a23)x3(t) +us(t)
with

yi(t) = x(t).
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LCM Motivating Example

a03

@ a; @ a23 @ M = (G, In, Out, Leak)
ani a32

= (Cats, {3}, {1}, {3}).

|n

ODE in terms of concentrations x;(t), input usz(t), and output y;(t):

Xj_(t) —ani aio 0 Xl(t) 0
X.Q(t) = ar; —aip — azp an3 Xz(t) + 0
X3(t) 0 asp —ap3 — az3 X3(t) U3(1.')

compartmental matrix A

with
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LCM Motivating Example: Input/Output Equation

a03

@ a; @ a23 @ M = (G, In, Out, Leak)
ani a32

= (Cat3> {3}a {1}7 {3})
in
Via a simple substitution and application of Cramer’s Rule:

(3) + (303 + a12 + a1 + a3 + az)yi + (203312 + oz an

+aars + axiaxs + aozazn + axazn)yr + (agzazias)yr = (azas)us.

an ODE in only the measurable variables and the parameters:

Input/Output Equation
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Input/Output Equation

Proposition
Consider M = (G, In, Out, Leak) with n = | V| and |In| > 1. Define 0/ to
be the n x n diagonal matrix where the diagonal entries are the differential

operator d/dt. Then, the following equations are input/output equations
of M:

det(dl — A)y; = (1) det (91 — A)¥) u;  for j € Out .
i€ln

This characterization of the input/output equation is difficult to relate to
the Jacobian for later identifiability analysis.
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Input/Output Equation via G (in = out)

Theorem (Gross, Meshkat, Shiu [4])

Consider M = (G, In, Out, Leak) with G strongly connected,
In = Out = {1} and |Leak| > 1. If n = |V, then an input/output
equation of M is

Y4y tayitoy = b tdpoul™ D4t dy+doun
with coefficients:
Ci = Z g fori=0,1,...,n—1, and
FeF,_ i(G)

di= ) wp fori=01,...,n-2
FEFn_i—1(G1)
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Input/Output Equation via G

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Consider M = (G, In, Out, Leak) with |In| > 1 and n = |V;|. Then an
input/output equation (for some j € Out) for M is

yj(") + Cn—lyj(n_l) + -+ Cl_yj/ + cyj = Z(—1)1+J (d,-,,,,luf"_l) 4+ .-+ dl‘,].ul{ + d,‘}oLli) .

i€ln

with coefficients:

G = Z TE for k=0,1,...,n—1, and
FeFn_«(G)
dix = > wp  foricinand k=0,1,...,n—1.

FeF,? ,_1(G})
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Graph Definitions

For a model M = (G, In, Out, Leak)

e G is the graph G U {0} where for each i € Leak, we add the edge
i — 0 with edge weight ag;

° 5,’(“ is the graph G where we remove every edge leaving node k

Example
For M = (G,{2},{1},{1}) where G = Cats, we have

a a a a
@"’“@alf@azz@ © Cl)‘ﬁT‘a:i»@
6 .
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Incoming Forests

For a directed graph H

@ H is called an incoming forest if its underlying undirected graph is a
forest, and no vertex has more than one outgoing edge

Fi(H) is the set of all incoming forests on H with k edges

f,i’j(H) is the set of all incoming forests on H with k edges
containing a directed path from i to j

7y is the product of edge weights of the edges of H

F(G)={{3—2,2—-11-0}}

) ) a a
F2HG) ={{2— 1,3 > 2}, @ o @ QZ @ azz @
G

{2—-1,1—-0}}

@ Tz = 201d12a21323332.
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For M = (G, {2},{1},{1}), we have

The kth coefficient of LHS of the

@‘““@

a12

321

@

a23

as2

i-0 equation is:

Ck = E TF

FEF;_«(G)

@~

LHS coefficients:

Derivative Coefficient
(3) 1
2
( ) do1 + ai2 + a21 + a3 + a3
i
( ) d01412 + a01823 + a12a23 + az1a23 + dp1a32 + az1a32
0
( ) ap14124a23

v
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For M = (G, {2},{1},{1}), we have

The kth coefficient of LHS of the

@‘““@

a12

321

@

a23

332
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For M = (G,{2},{1},{1}), we have

@ 0™a

=1O
a32

The kth coefficient of RHS of the

i-0 equation is:

d, =
|n G1
RHS coefficients:
Derivative | Coefficient
ugl) aio
ul¥ a
> 12423

Fer!

3

2

TF

G0
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For M = (G,{2},{1},{1}), we have

@ 0™a

=1O
a32

G1

RHS coefficients: Incoming forests with 1 edge and the edge from 2 to 1

The kth coefficient of RHS of the

i-0 equation is:

dx =

Derivative | Coefficient
(1)
U, da12
(0)
U, d124d23

Fer!

3

2

TF

G0
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For M = (G,{2},{1},{1}), we have

@ 0™a

=1O
a32

G1

RHS coefficients: Incoming forests with 1 edge and the edge from 2 to 1

The kth coefficient of RHS of the

i-0 equation is:

dx =

Derivative | Coefficient
(1)
U, d12
(0)
U, d124d23

Fer!

3

2

TF
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For M = (G,{2},{1},{1}), we have

@ 0™a

=1O
a32

G1

RHS coefficients: Incoming forests with 2 edges and the edge from 2 to 1

The kth coefficient of RHS of the

i-0 equation is:

dx =

Derivative | Coefficient
(1)
U, da12
(0)
U, d124d23

Fer!

3

2
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For M = (G,{2},{1},{1}), we have

@ 0™a

=10
a32

G1

RHS coefficients: Incoming forests with 2 edges and the edge from 2 to 1

The kth coefficient of RHS of the

i-0 equation is:

dx =

Derivative | Coefficient
(1)
U, da12
(0)
U, d12423

Fer!

3

2
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Proof structure: Induction on |Eg]

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients dix = ZFef,-n_,iuil(g*t) s

Proof idea: Induction on |Eg|
@ Base case: |Eg| =0
o FiMoUt = so all dy are zero
o (0l —A);j =0 for all i # j, therefore det((0/ — A)™°"*) =0
@ Inductive step

e Laplacian expansion down the in column, i.e. all edges leaving in

det((al _A)in,out) _ Z (_1)in+jaj(in) det((@/ _A){in,j},{in,out})

in—j€Eg

RHS of model with less edges
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Number of Coefficients

Corollary (B., Gross, Meshkat, Shiu, Sullivant [1])

Consider M = (G, {in},{out}, Leak) where G is strongly connected and
|Vg| = n. Then the numbers of non-constant coefficients on the left-hand
and right-hand sides of the input/output equation are:

n if Leak # ()
n—1 if Leak=10

n—1 if in = out

on LHS =
# { n — dist(in, out) if in # out.

, #onRHS:{

v

Example

For M = (G, {3},{1},{1}), the input/output equation is:

y1(3) + (301 + a12 + a21 + a3 + as2)y1 + (q01812 + a01323

+a12ax3 + axiax3 + aoias + azias)yr + (ao1a12a23)y1 = (a12a23) t.

a a; —
@@@%@%@ # on LHS =3
in

: ] # on RHS = 1

v
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|dentifiability

o Let ¢ be the coefficient map from the parameter space of a model to
the coefficient space of its input/output equation

@ A model is said to be generically locally structurally identifiable
(identifiable) if, outside a set of measure zero, every point in the
parameter space has an open neighborhood U for which ¢|y is
one-to-one

Proposition (Sufficient condition for unidentifiability)
A model M = (G, In, Out, Leak) is unidentifiable if

# parameters > # coefficients.
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Example

For M = (G, {3},{1},{1}), the input/output equation is:

y1(3) + (a01 + a12 + a21 + axs + as2)y1 + (201812 + ao1323

+apars + azaxs + anias + axas)yr + (do1312a323)y1 = areaxsus.

@301®a12@323© # on LHS =3

azl as2

: # on RHS = 1

The coefficient map corresponding to M is:

4

¢: R® SR

ao1

. o1 + a12 + a1 + a3 + as
2 s 201312 + @o1d23 + a12a23 + az1a23 + ao1a32 + axas

21
2 do14124a23

23

a12a23

as2
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Unidentifiability

Corollary (B., Gross, Meshkat, Shiu, Sullivant [1])

Consider M = (G, {in},{out}, Leak) where G is strongly connected and
|Vi| = n. Define L and d as follows:

| - 0 if Leak =10 and  d— 1 if dist(in,out) =0
|1 if Leak £ 0 | dist(in, out) if dist(in, out) # 0.
Then M is unidentifiable if

|Leak| + |Eg| >2n—L—d.
—_—

# parameters # coefficients

Cash Bortner (NCSU) LCM Tree Models
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Tree Models

Definition
A tree model M = (G, In, Out, Leak) has properties
o the edge i — j € Eg if and only if the edge j — i € Eg

@ underlying undirected graph of G a tree*

Examples
a0z (1)
/1
ai2 a3 -1 :
@ E’ @ 3_32> arTnl@ @*3 @
Catenary \c"lf
az1

©)

Mammillary
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Unidentifiability of Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G, {in},{out}, Leak) is unidentifiable if
dist(in, out) > 2 or |Leak| > 2.

Proof idea: Let n = |V].
e # parameters in M is |Eg| + |Leak| = 2n — 2 + |Leak]|

@ in all five cases, # parameters > # coefficients

|Leak| > 2 |Leak| =1 |Leak| =0
dist(in, out) > 2 | 2n — dist(in, out) | 2n — dist(in, out) | 2n — dist(in, out) — 1
dist(in, out) =1 2n—1 2n—1 2n —2
dist(in, out) =0 2n—1 2n—1 2n—2

Note: The four cases in blue have # parameters = # coefficients, but
that does not guarantee identifiability.
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Building ldentifiable Tree Models

Idea for showing that # parameters = # coefficients implies identifiability:

@ start with some base model that we know is identifiable (Theorem*)

e from base model, build all tree models where |Leak| <1 and
dist(in, out) < 1 and retain identifiability at each step

Theorem* (B., Gross, Meshkat, Shiu, Sullivant [1])
The tree model M = (G, {i},{i},0) is identifiable.

Theorem (Gross, Harrington, Meshkat, Shiu [3])

Let M = (G, In, Out, () be a strongly connected and identifiable. Then,
the model M’ = (G, In, Out, {k}) is also identifiable.
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The Jacobian

Theorem

The model M = (G, {i},{j}, Leak) is identifiable if and only if the rank of
the Jacobian matrix of its coefficient map is equal to # parameters.

Example

For M = (G, {3},{1},{1}), the input/output equation is:

3 .
yl( ) 4+ (a01 + a12 + a21 + a23 + a32)y1 + (ao1a12 + ao1a23

€2

+a1pan3 + ar1a23 + ao1a32 + a21a32)y1 + (ao1a12a23)y1 = (a2ax3)u3
———— ——

Gil < do
ao1 ar a1 a3 as
(o) 1 1 1 1 1
() = Ci|am2+axs+ax ann+as as3+tax antaztaxn an+ax
o) aipan3 ao1a23 0 ao1ai2 0
do 0 a3 0 ain 0

y
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Moving the Input/Output

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])
(

Let M = (G, {i},{i},0) be an identifiable tree model with |Vg| = n — 1.
Let H be the graph G with the added node n and edges i — n and n — i.
Then following models are also identifiable:

o M; = (H: {i}a{”}ﬂ(b)
o My = (H,{n},{i},0).

Example
Here, M = (G,{1},{1},0) and My = (H, {4}, {1},0):

D=@=0G) @eeD=@=0)
— — — — —

— — — — —

7 \)321 asp 7

in in M

a4 a1 az2
M

2

v
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Proof of Moving the Input/Output

Theorem (B., Gross, Meshkat, Shiu, Sullivant)

Let M = (G, {i},{i},0) be an identifiable tree model with |Vg| = n— 1.
Let H be the graph G with the added node n and edges i — n and n — i.
Then following models are also identifiable:

o M; = (H,{i},{n},@)
o My = (H, {n}v {l}v(b)

Proof idea:

@ write the coeffs of M in terms of coeffs of M and the new params

@ manipulate the Jacobian of M/ to “find" the Jacobian of M, which
by assumption has full rank:

so = (M9 )

@ show that C has full rank using properties of the graph
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Adding a Leaf

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Let M = (G, {i},{j},0) be an identifiable tree model with |Vg| = n— 1.
Define £ = (H,{i},{/j},0) where H is the graph G with the added node n
and edges k — n and n — k for some k € V. Then, L is identifiable.

Example
Here, M = (G,{2},{3},0) and £ = (H, {2},{3},0):

@Zf@:j@ @341@)312@323@
S S

aia 321 as2
G |n
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Proof of Adding a Leaf

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Let M = (G, {i},{j},0) be an identifiable tree model with |Vg| = n— 1.
Define £ = (H,{i},{/j},0) where H is the graph G with the added node n
and edges k — n and n — k for some k € V. Then, L is identifiable.

Proof idea:
# parameters

@ Define weight w € Q% so that the initial form of most
coefficients does not contain ap or ak,, define drw

e We know that Rank(J(¢,w)) < Rank(J(¢r))

o We can write J(¢ ) = <J(giM) 2)

e show C has maximal rank using properties of the graph
o this implies that Rank(J(¢z,w)) = max{Rank(J(¢z)}
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Classification of Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G, {in}, {out}, Leak) is identifiable if and only if
dist(in,out) < 1 and |Leak| < 1.

Proof idea:
e M is unidentifiable if either dist(in,out) > 1 or |Leak| > 1
e M is identifiable if in = out and |Leak| =0
e M is identifiable if dist(in,out) =1 and |Leak| =0
e if M is identifiable with |Leak| = 0, then it is identifiable with
|Leak| =1
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@ generalize results on tree models to other linear compartmental
models
o find more applications for new characterization of coefficients

e consider distinguishability, i.e. the problem of determining whether two
or more linear compartmental models fit a given set of measured data
e look for patterns in the singular locus for dividing edges

@ consider the problem of determining identifiability when multiple
inputs/outputs are present
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|dentifiable Path/Cycle Model Motivating Example

ao1 ao2 ao03
PR
/ a3
in
M

@ The model M = (G, {1}, {2}, Vi) is not identifiable:

o # parameters =6
e max # coefficients =5

@ Maybe we can recover combinations of parameters
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|dentifiable Path/Cycle Model Motivating Example

o, o ao3
5 —ap1 — a1 0 0
J a3 A= a2 —ap — a3 a3

a —agz — a
in 0 32 03 — 323

M

Input/Output Equation:

3 .
y2( ) 1 (a01 + 202 + 203 + a1 + a3 + a32) + (a01302 + 201303 + 202303
+ag2a21 + 203221 + a01223 + 202223 + a21323 + 201332 + A03232 + A21232)Y2
+(a01202303 + 20230321 + 201302323 + 02221323 + 301203232 + A03321332)y2 = (a21)u1 + (a21203 + a21323) U1

Cash Borf
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|dentifiable Path/Cycle Model Motivating Example

0 azx ass

an ax a3
8 a1 as 8 a1 O 0
2
Ve a3 A=laxn ax ax
in
M

Input/Output Equation:

3 o .
}/2( ) + (—a11 — a2 — a33)yh + (11322 — ax3asy + 311333 + 320333)Ya + (311323332 — A11322333) Y2
= (a21)u1 + (a21a03 + ax1az3)u1

This model is an identifiable path/cycle model with identifiable functions

d11, 422, 433, 421, 4d23432.

v
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Results (Preprint [2])

@ Stated necessary and sufficient conditions for a model to be an
identifiable path/cycle model based on graph

@ Stated results relating identifiable path/cycle models to identifiable
models based on reducing the number of leaks
e Expanded several previous result on identifiable cycle models [5, 6]
e Again, the identifiable cycle models all have in = out
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Cramer’s Rule

M = (G, In, Out, Leak) = (Cats, {3}, {1}, {3}).

ODE in terms of concentrations x;(t), input u3(t), and output y;(t):

(X'l(t)) (—321 a 0 > ()q(t)) ( 0 )
X(t) | = aan —a2 — a a3 x(t) |+ 0
X3(t) 0 as —ao3 — ax3) \xa(t) us(t)

compartmental matrix A

with
yi(t) = xu(t).
yields

d/dt 0 0 —an a1n 0 y(t) 0
(( 0 d/dt 0 ) — ( ani —ai2 — as an3 > ) (Xg(t)) = ( 0 )
0 0 d/dt 0 az —a03 — a3 x3(t) u3(t)
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Cramer’s Rule Continued

M = (G, In, Out, Leak) = (Cats, {3}, {1}, {3}).

A+ ax —an 0 y(t) 0
—a1 Atan+an —a3 x(t) | = 0
0 —a3 A+ ao3 + a3 x3(t) u3(t)

Applying Cramer's Rule

0 —agn 0
det 0 A+ agp + a3 —an3
u3(t) —ap A + a3 + a3
n(t) =
A+ a2 —a12 0
det | —an1 A+ a2 + azn —ax
0 —a3 A+ ag3 + a3

3 ..
Y;E ) + (a03 + @12 + a»1 + a2z + a32)y1 + (a0za12 + agz a2

+aipars + axaxz + apzase + a2 an)yr + (azazas)yr = (aizazs)us.
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients dx = D FeFinon (&) TF

Proof idea: Induction on |Eg]|
@ Base case: |Eg| =0
° f,i'lc,’(‘fl = () so all the d above are zero
o (M —A);j =0 for all i # j, therefore det((A — A)™eut) =0

Example
Consider M = (G, {3},{2},{1}).

A 0 0
a0 (020 @ @
0 0 A G 4 1

V.
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {/n} {out}, Leak)
with in # out has coefficients di = ZFefm o (G T

@ Inductive step
e Laplacian expansion down the in column, i.e. all edges leaving in

det((/\l _A)in,out) _ Z (_1)in+jaj(in) det(()\l _A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Example
Consider M = (G, {2}, {3}, {1}).

o1 )
()\ + ao1 + ax a2 0) @ @ an @ Er
M—A=

ani Atap+ax 0
0 asz A G3 n
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {/n} {out}, Leak)
with in # out has coefficients di = ZFefm o (G T

@ Inductive step
e Laplacian expansion down the in column, i.e. all edges leaving in

det((/\l _A)in,out) _ Z (_1)in+jaj(in) det(()\l _A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Consider M = (G, {2}, {3}, {1}).

a01 312
(A = A)>® = (A S 5 alZ) @ @ a1 C? a3

0 as
G3 n
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients d, = ZFefm o (G T

@ Inductive step
o Laplacian expansion down the in column, i.e. all edges leaving in

det(()\l _ A)in,out) — Z (71)in+jaj(m) det(()\l _ A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Example

Consider M = (G, {2}, {3}, {1}). 201 a1
(M — A2 = (A + ao1 + ax 312> @ @ ai @ as

0 as
G3 n

det((M — A)?3) = (—1)1*2a15 det(0) + (—1)?*2a3; det(A + ap1 + a21)
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients d, = ZFefm o (G T

@ Inductive step
o Laplacian expansion down the in column, i.e. all edges leaving in

det(()\l _ A)in,out) — Z (71)in+jaj(m) det(()\l _ A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Example

Consider ./\/l = (G7 {2}7 {3}7 {1}) a01
(M — A = ()\ =+ ao1 + a2 312> @ @ a1 @ @

0 as
H3 | n

det((M — A)?3) = (—1)1*2a15 det(0) + (—1)?*2a3; det(A + ap1 + a21)
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients d, = ZFefm o (G T

@ Inductive step
o Laplacian expansion down the in column, i.e. all edges leaving in

det(()\l _ A)in,out) — Z (71)in+jaj(m) det(()\l _ A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Example

Consider M = (G, {2}, {3}, {1}). a0 o 212
(M — A)z,s _ ()\ + ao1 + a1 312> @ @ ari @ a‘32>

0 as
G3 n

det(()\l = A)2’3) = (—1)1+2312 det(O) T (*1)2—"_2332 det()\ + aop1 + 321)

v
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Proof structure: Induction on |Eg]

The RHS of the input/output equation of M = (G, {in}, {out}, Leak)
with in # out has coefficients d, = ZFefm o (G T

@ Inductive step
o Laplacian expansion down the in column, i.e. all edges leaving in

det(()\l _ A)in,out) — Z (71)in+jaj(m) det(()\l _ A){in,j},{in,out})

in—j€Eg

RHS of model with less edges

Example

Consider M = (G, {2}, {3}, {1}).

i )| O2Oz® B
in

0 as2 L*

det(()\l = A)2’3) = (—1)1+2312 det(O) T (*1)2—"_2332 det()\ + aop1 + 321)

v
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