Identifiability of Linear Compartmental Tree Models

Cash Bortner

North Carolina State University cwbortne@ncsu.edu

PuGS

September 27th, 2021

Outline

(1) General Structural Identifiability
(2) Linear Compartmental Model Background
(3) Tree Models

44 Identifiable Path/Cycle Models

Table of Contents

(1) General Structural Identifiability
(2) Linear Compartmental Model Background
(3) Tree Models

44 Identifiable Path/Cycle Models

Identifiability Analysis: A two part problem

Overview

Structural identifiability is the problem of determining if the parameters of a model can be recovered from the measurable variables of the model under perfect conditions.
Note: Structural identifiability is a necessary condition for practical identifiability.

- Structural identifiability can be carried out in two phases:

1. Find the input/output equation[s] of the ODE system in terms of observable variables
2. Determine injectivity of coefficient map defined by input/output equation[s] often via the computing the rank of the Jacobian

Table of Contents

(1) General Structural Identifiability

(2) Linear Compartmental Model Background

LCM Motivating Example

$1:=$ Good Golfers
2 := Decent Golfers
3 := Bad Golfers

LCM Motivating Example

$$
\left(1 \leftrightarrows 3 \leftrightarrows \begin{array}{l}
1:=\text { Good Golfers } \\
2:=\text { Decent Golfers } \\
3:=\text { Bad Golfers }
\end{array}\right.
$$

LCM Motivating Example

$1:=$ Good Golfers
2 := Decent Golfers
3 := Bad Golfers

LCM Motivating Example

$1:=$ Good Golfers
2 := Decent Golfers
3 := Bad Golfers

LCM Motivating Example

$$
\text { (1) } \underset{a_{21}}{\stackrel{a_{12}}{\leftrightarrows}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}} \underbrace{a_{03}}_{\substack{\text { in }}}
$$

$1:=$ Good Golfers
 2 := Decent Golfers

3 := Bad Golfers

LCM Motivating Example

$1:=$ Good Golfers
 2 := Decent Golfers

3 := Bad Golfers

LCM Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

LCM Motivating Example

ODE in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\begin{array}{lrl}
\dot{x}_{1}(t) & =-a_{21} x_{1}(t) & +a_{12} x_{2}(t) \\
\dot{x_{2}}(t) & =a_{21} x_{1}(t)-\left(a_{12}+a_{32}\right) x_{2}(t) & +a_{23} x_{3}(t) \\
\dot{x_{3}}(t) & = & a_{32} x_{2}(t)-\left(a_{03}+a_{23}\right) x_{3}(t)+u_{3}(t)
\end{array}
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

LCM Motivating Example

ODE in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\left(\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x_{2}}(t) \\
\dot{x}_{3}(t)
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)}_{\text {compartmental matrix } \mathrm{A}}\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

LCM Motivating Example: Input/Output Equation

Via a simple substitution and application of Cramer's Rule:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y}_{1}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y}_{1}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

an ODE in only the measurable variables and the parameters:
Input/Output Equation

Input/Output Equation

Proposition

Consider $\mathcal{M}=(G, I n$, Out, Leak $)$ with $n=\left|V_{G}\right|$ and $|I n| \geq 1$. Define ∂I to be the $n \times n$ diagonal matrix where the diagonal entries are the differential operator $d / d t$. Then, the following equations are input/output equations of \mathcal{M} :

$$
\operatorname{det}(\partial I-A) y_{j}=\sum_{i \in \ln }(-1)^{i+j} \operatorname{det}\left((\partial I-A)^{i, j}\right) u_{i} \quad \text { for } j \in \text { Out }
$$

Remark

This characterization of the input/output equation is difficult to relate to the Jacobian for later identifiability analysis.

Input/Output Equation via G (in = out)

Theorem (Gross, Meshkat, Shiu [4])

Consider $\mathcal{M}=(G, I n$, Out, Leak) with G strongly connected, In $=$ Out $=\{1\}$ and \mid Leak $\mid \geq 1$. If $n=\left|V_{G}\right|$, then an input/output equation of \mathcal{M} is
$y_{1}^{(n)}+c_{n-1} y_{1}^{(n-1)}+\cdots+c_{1} y_{1}^{\prime}+c_{0} y_{1}=u_{1}^{(n-1)}+d_{n-2} u_{1}^{(n-2)}+\cdots+d_{1} u_{1}^{\prime}+d_{0} u_{1}$ with coefficients:

$$
\begin{aligned}
& c_{i}=\sum_{F \in \mathcal{F}_{n-i}(\widetilde{G})} \pi_{F} \quad \text { for } i=0,1, \ldots, n-1, \quad \text { and } \\
& d_{i}=\sum_{F \in \mathcal{F}_{n-i-1}\left(\widetilde{G}_{1}\right)} \pi_{F} \quad \text { for } i=0,1, \ldots, n-2 .
\end{aligned}
$$

Input/Output Equation via G

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])
Consider $\mathcal{M}=(G$, In, Out, Leak $)$ with $|I n| \geq 1$ and $n=\left|V_{G}\right|$. Then an input/output equation (for some $j \in$ Out) for \mathcal{M} is
$y_{j}^{(n)}+c_{n-1} y_{j}^{(n-1)}+\cdots+c_{1} y_{j}^{\prime}+c_{0} y_{j}=\sum_{i \in I n}(-1)^{i+j}\left(d_{i, n-1} u_{i}^{(n-1)}+\cdots+d_{i, 1} u_{i}^{\prime}+d_{i, 0} u_{i}\right)$
with coefficients:

$$
\begin{aligned}
c_{k} & =\sum_{F \in \mathcal{F}_{n-k}(\widetilde{G})} \pi_{F} \quad \text { for } k=0,1, \ldots, n-1, \quad \text { and } \\
d_{i, k} & =\sum_{F \in \mathcal{F}_{n-k-1}^{i, j}\left(\widetilde{G}_{j}^{*}\right)} \pi_{F} \quad \text { for } i \in \operatorname{In} \text { and } k=0,1, \ldots, n-1 .
\end{aligned}
$$

Graph Definitions

Definitions

For a model $\mathcal{M}=(G$, In, Out, Leak $)$

- \widetilde{G} is the graph $G \cup\{0\}$ where for each $i \in$ Leak, we add the edge $i \rightarrow 0$ with edge weight $a_{0} i$
- \widetilde{G}_{k}^{*} is the graph \widetilde{G} where we remove every edge leaving node k

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$ where $G=$ Cat $_{3}$, we have

Incoming Forests

Definitions

For a directed graph H

- H is called an incoming forest if its underlying undirected graph is a forest, and no vertex has more than one outgoing edge
- $\mathcal{F}_{k}(H)$ is the set of all incoming forests on H with k edges
- $\mathcal{F}_{k}^{i, j}(H)$ is the set of all incoming forests on H with k edges containing a directed path from i to j
- π_{H} is the product of edge weights of the edges of H

Example

- $\mathcal{F}_{3}(\widetilde{G})=\{\{3 \rightarrow 2,2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\mathcal{F}_{2}^{2,1}(\widetilde{G})=\{\{2 \rightarrow 1,3 \rightarrow 2\}$, $\{2 \rightarrow 1,1 \rightarrow 0\}\}$

$$
\text { (0) } \stackrel{a_{01}}{\leftrightarrows} \text { (1) } \underset{a_{21}}{a_{12}}(2) \stackrel{a_{23}}{\underset{a_{32}}{\leftrightarrows}}(3)
$$

\widetilde{G}

- $\pi_{\widetilde{G}}=a_{01} a_{12} a_{21} a_{23} a_{32}$.

Incoming Forests

Definitions

For a directed graph H

- H is called an incoming forest if its underlying undirected graph is a forest, and no vertex has more than one outgoing edge
- $\mathcal{F}_{k}(H)$ is the set of all incoming forests on H with k edges
- $\mathcal{F}_{k}^{i, j}(H)$ is the set of all incoming forests on H with k edges containing a directed path from i to j
- π_{H} is the product of edge weights of the edges of H

Example

- $\mathcal{F}_{3}(\widetilde{G})=\{\{3 \rightarrow 2,2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\mathcal{F}_{2}^{2,1}(\widetilde{G})=\{\{2 \rightarrow 1,3 \rightarrow 2\}$, $\{2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\pi_{\widetilde{G}}=a_{01} a_{12} a_{21} a_{23} a_{32}$.

Incoming Forests

Definitions

For a directed graph H

- H is called an incoming forest if its underlying undirected graph is a forest, and no vertex has more than one outgoing edge
- $\mathcal{F}_{k}(H)$ is the set of all incoming forests on H with k edges
- $\mathcal{F}_{k}^{i, j}(H)$ is the set of all incoming forests on H with k edges containing a directed path from i to j
- π_{H} is the product of edge weights of the edges of H

Example

- $\mathcal{F}_{3}(\widetilde{G})=\{\{3 \rightarrow 2,2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\mathcal{F}_{2}^{2,1}(\widetilde{G})=\{\{2 \rightarrow 1,3 \rightarrow 2\}$, $\{2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\pi_{\widetilde{G}}=a_{01} a_{12} a_{21} a_{23} a_{32}$.

Incoming Forests

Definitions

For a directed graph H

- H is called an incoming forest if its underlying undirected graph is a forest, and no vertex has more than one outgoing edge
- $\mathcal{F}_{k}(H)$ is the set of all incoming forests on H with k edges
- $\mathcal{F}_{k}^{i, j}(H)$ is the set of all incoming forests on H with k edges containing a directed path from i to j
- π_{H} is the product of edge weights of the edges of H

Example

- $\mathcal{F}_{3}(\widetilde{G})=\{\{3 \rightarrow 2,2 \rightarrow 1,1 \rightarrow 0\}\}$
- $\mathcal{F}_{2}^{2,1}(\widetilde{G})=\{\{2 \rightarrow 1,3 \rightarrow 2\}$, $\{2 \rightarrow 1,1 \rightarrow 0\}\}$

$$
\text { (0) } \stackrel{a_{01}}{\leftrightarrows} \text { (1) } \underset{a_{21}}{a_{12}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}}(3)
$$

\widetilde{G}

- $\pi_{\widetilde{G}}=a_{01} a_{12} a_{21} a_{23} a_{32}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients:

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 3 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 3 edges

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{01}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{01} a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of RHS of the i i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{2,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients:

Derivative	Coefficient
$u_{2}^{(1)}$	a_{12}
$u_{2}^{(0)}$	$a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of RHS of the i i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{2,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 1 edge and the edge from 2 to 1

Derivative	Coefficient
$u_{2}^{(1)}$	a_{12}
$u_{2}^{(0)}$	$a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of RHS of the i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{2,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 1 edge and the edge from 2 to 1

Derivative	Coefficient
$u_{2}^{(1)}$	a_{12}
$u_{2}^{(0)}$	$a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of RHS of the i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{2,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 2 edges and the edge from 2 to 1

Derivative	Coefficient
$u_{2}^{(1)}$	a_{12}
$u_{2}^{(0)}$	$a_{12} a_{23}$

Example

For $\mathcal{M}=(G,\{2\},\{1\},\{1\})$, we have
The $k^{\text {th }}$ coefficient of RHS of the i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{2,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 2 edges and the edge from 2 to 1

Derivative	Coefficient
$u_{2}^{(1)}$	a_{12}
$u_{2}^{(0)}$	$a_{12} a_{23}$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\tilde{G}_{\text {out }}^{*}\right)} \pi_{F}$

Proof idea: Induction on $\left|E_{G}\right|$

- Base case: $\left|E_{G}\right|=0$
- $\mathcal{F}_{n-k-1}^{\text {in,out }}=\emptyset$ so all d_{k} are zero
- $(\partial I-A)_{i, j}=0$ for all $i \neq j$, therefore $\operatorname{det}\left((\partial I-A)^{i n, \text { out }}\right)=0$
- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\partial I-A)^{\text {in,out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\partial I-A)^{\{i n, j\},\{i n, o u t\}}\right)}_{\text {RHS of model with less edges }}
$$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\tilde{G}_{\text {out }}^{*}\right)} \pi_{F}$

Proof idea: Induction on $\left|E_{G}\right|$

- Base case: $\left|E_{G}\right|=0$
- $\mathcal{F}_{n-k-1}^{\text {in,out }}=\emptyset$ so all d_{k} are zero
- $(\partial I-A)_{i, j}=0$ for all $i \neq j$, therefore $\operatorname{det}\left((\partial I-A)^{\text {in,out }}\right)=0$
- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\partial I-A)^{\text {in,out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left(\left(\partial I-A^{*}\right)^{j, \text { out }}\right)}_{\text {RHS of model with less edges }}
$$

Number of Coefficients

Corollary (B., Gross, Meshkat, Shiu, Sullivant [1])

Consider $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ where G is strongly connected and $\left|V_{G}\right|=n$. Then the numbers of non-constant coefficients on the left-hand and right-hand sides of the input/output equation are:
\# on LHS $=\left\{\begin{array}{ll}n & \text { if Leak } \neq \emptyset \\ n-1 & \text { if Leak }=\emptyset\end{array}, \quad \#\right.$ on RHS $= \begin{cases}n-1 & \text { if in }=\text { out } \\ n-\operatorname{dist(in,~out)~} & \text { if in } \neq \text { out }\end{cases}$

Example

For $\mathcal{M}=(G,\{3\},\{1\},\{1\})$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{01}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y}_{1}+\left(a_{01} a_{12}+a_{01} a_{23}\right. \\
& \left.+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{01} a_{12} a_{23}\right) y_{1}=\left(a_{12} a_{23}\right) u_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { \# on LHS }=3 \\
& \text { \# on } \mathrm{RHS}=1
\end{aligned}
$$

Identifiability

Definitions

- Let ϕ be the coefficient map from the parameter space of a model to the coefficient space of its input/output equation
- A model is said to be generically locally structurally identifiable (identifiable) if, outside a set of measure zero, every point in the parameter space has an open neighborhood U for which $\left.\phi\right|_{U}$ is one-to-one

Proposition (Sufficient condition for unidentifiability)

A model $\mathcal{M}=(G$, In, Out, Leak $)$ is unidentifiable if \# parameters > \# coefficients.

Example

Example

For $\mathcal{M}=(G,\{3\},\{1\},\{1\})$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{01}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y_{1}}+\left(a_{01} a_{12}+a_{01} a_{23}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{01} a_{12} a_{23}\right) y_{1}=a_{12} a_{23} u_{2}
\end{aligned}
$$

The coefficient map corresponding to \mathcal{M} is:

$$
\begin{aligned}
& \phi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4} \\
& \left(\begin{array}{c}
a_{01} \\
a_{12} \\
a_{21} \\
a_{23} \\
a_{32}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{01}+a_{12}+a_{21}+a_{23}+a_{32} \\
a_{01} a_{12}+a_{01} a_{23}+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32} \\
a_{01} a_{12} a_{23} \\
a_{12} a_{23}
\end{array}\right)
\end{aligned}
$$

Unidentifiability

Corollary (B., Gross, Meshkat, Shiu, Sullivant [1])

Consider $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak) where G is strongly connected and $\left|V_{G}\right|=n$. Define L and d as follows:
$L=\left\{\begin{array}{ll}0 & \text { if Leak }=\emptyset \\ 1 & \text { if Leak } \neq \emptyset\end{array} \quad\right.$ and $\quad d= \begin{cases}1 & \text { if } \operatorname{dist}(\mathrm{in}, \text { out })=0 \\ \operatorname{dist(in,~out)~} & \text { if } \operatorname{dist}(\mathrm{in}, \text { out }) \neq 0\end{cases}$
Then \mathcal{M} is unidentifiable if

$$
\underbrace{\mid \text { Leak }\left|+\left|E_{G}\right|\right.}_{\# \text { parameters }}>\underbrace{2 n-L-d}_{\# \text { coefficients }}
$$

Table of Contents

(1) General Structural Identifiability

(2) Linear Compartmental Model Background

(3) Tree Models

44 Identifiable Path/Cycle Models

Tree Models

Definition

A tree model $\mathcal{M}=(G$, In, Out, Leak) has properties

- the edge $i \rightarrow j \in E_{G}$ if and only if the edge $j \rightarrow i \in E_{G}$
- underlying undirected graph of G a tree*

Examples

$$
\text { (1) } \stackrel{a_{12}}{\stackrel{a_{21}}{\leftrightarrows}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}} \cdots \underset{a_{n, n-1}}{\stackrel{a_{n-1, n}}{\leftrightarrows}} n
$$

Catenary

Mammillary

Unidentifiability of Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters in \mathcal{M} is $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- in all five cases, \# parameters > \# coefficients

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-$ dist(in, out)	$2 n-$ dist(in, out) -1
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Note: The four cases in blue have \# parameters = \# coefficients, but that does not guarantee identifiability.

Building Identifiable Tree Models

Idea for showing that \# parameters = \# coefficients implies identifiability:

- start with some base model that we know is identifiable (Theorem*)
- from base model, build all tree models where \mid Leak $\mid \leq 1$ and dist(in, out) ≤ 1 and retain identifiability at each step

Theorem* (B., Gross, Meshkat, Shiu, Sullivant [1])

The tree model $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ is identifiable.

Theorem (Gross, Harrington, Meshkat, Shiu [3])

Let $\mathcal{M}=(G, I n$, Out, $\emptyset)$ be a strongly connected and identifiable. Then, the model $\mathcal{M}^{\prime}=(G, \operatorname{In}$, Out, $\{k\})$ is also identifiable.

The Jacobian

Theorem

The model $\mathcal{M}=(G,\{i\},\{j\}$, Leak $)$ is identifiable if and only if the rank of the Jacobian matrix of its coefficient map is equal to \# parameters.

Example

For $\mathcal{M}=(G,\{3\},\{1\},\{1\})$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+(\underbrace{a_{01}+a_{12}+a_{21}+a_{23}+a_{32}}_{c_{2}}) \ddot{y_{1}}+\left(a_{01} a_{12}+a_{01} a_{23}\right. \\
& \underbrace{+a_{12} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{21} a_{32}}_{c_{1}}) \dot{y_{1}}+(\underbrace{a_{01} a_{12} a_{23}}_{c_{0}}) y_{1}=(\underbrace{a_{12} a_{23}}_{d_{0}}) u_{3}
\end{aligned}
$$

$$
J(\phi)=\begin{gathered}
\\
c_{2} \\
c_{1} \\
c_{0} \\
d_{0}
\end{gathered}\left(\begin{array}{ccccc}
a_{01} & a_{12} & a_{21} & a_{23} & a_{32} \\
1 & 1 & 1 & 1 & 1 \\
a_{12}+a_{23}+a_{32} & a_{01}+a_{23} & a_{23}+a_{32} & a_{01}+a_{12}+a_{21} & a_{01}+a_{21} \\
a_{12} a_{23} & a_{01} a_{23} & 0 & a_{01} a_{12} & 0 \\
0 & a_{23} & 0 & a_{12} & 0
\end{array}\right)
$$

Moving the Input/Output

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ be an identifiable tree model with $\left|V_{G}\right|=n-1$. Let H be the graph G with the added node n and edges $i \rightarrow n$ and $n \rightarrow i$. Then following models are also identifiable:

- $\mathcal{M}_{1}=(H,\{i\},\{n\}, \emptyset)$
- $\mathcal{M}_{2}=(H,\{n\},\{i\}, \emptyset)$.

Example

Here, $\mathcal{M}=(G,\{1\},\{1\}, \emptyset)$ and $\mathcal{M}_{2}=(H,\{4\},\{1\}, \emptyset)$:

Proof of Moving the Input/Output

Theorem (B., Gross, Meshkat, Shiu, Sullivant)

Let $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ be an identifiable tree model with $\left|V_{G}\right|=n-1$. Let H be the graph G with the added node n and edges $i \rightarrow n$ and $n \rightarrow i$. Then following models are also identifiable:

- $\mathcal{M}_{1}=(H,\{i\},\{n\}, \emptyset)$
- $\mathcal{M}_{2}=(H,\{n\},\{i\}, \emptyset)$.

Proof idea:

- write the coeffs of \mathcal{M}_{k} in terms of coeffs of \mathcal{M} and the new params
- manipulate the Jacobian of \mathcal{M}_{k} to "find" the Jacobian of \mathcal{M}, which by assumption has full rank:

$$
J\left(\phi_{k}\right)=\left(\begin{array}{cc}
J(\phi) & 0 \\
* & C
\end{array}\right)
$$

- show that C has full rank using properties of the graph

Adding a Leaf

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{j\}, \emptyset)$ be an identifiable tree model with $\left|V_{G}\right|=n-1$. Define $\mathcal{L}=(H,\{i\},\{j\}, \emptyset)$ where H is the graph G with the added node n and edges $k \rightarrow n$ and $n \rightarrow k$ for some $k \in V_{G}$. Then, \mathcal{L} is identifiable.

Example

Here, $\mathcal{M}=(G,\{2\},\{3\}, \emptyset)$ and $\mathcal{L}=(H,\{2\},\{3\}, \emptyset)$:

Proof of Adding a Leaf

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{j\}, \emptyset)$ be an identifiable tree model with $\left|V_{G}\right|=n-1$. Define $\mathcal{L}=(H,\{i\},\{j\}, \emptyset)$ where H is the graph G with the added node n and edges $k \rightarrow n$ and $n \rightarrow k$ for some $k \in V_{G}$. Then, \mathcal{L} is identifiable.

Proof idea:

- Define weight $\omega \in \mathbb{Q}_{\geq 0}^{\#}$ parameters so that the initial form of most coefficients does not contain $a_{n k}$ or $a_{k n}$, define $\phi_{\mathcal{L}, \omega}$
- We know that $\operatorname{Rank}\left(J\left(\phi_{\mathcal{L}, \omega}\right)\right) \leq \operatorname{Rank}\left(J\left(\phi_{\mathcal{L}}\right)\right)$
- We can write $J\left(\phi_{\mathcal{L}, \omega}\right)=\left(\begin{array}{cc}J\left(\phi_{\mathcal{M}}\right) & 0 \\ * & C\end{array}\right)$
- show C has maximal rank using properties of the graph
- this implies that $\operatorname{Rank}\left(J\left(\phi_{\mathcal{L}, \omega}\right)\right)=\max \left\{\operatorname{Rank}\left(J\left(\phi_{\mathcal{L}}\right)\right\}\right.$

Classification of Tree Models

Theorem (B., Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Proof idea:

- \mathcal{M} is unidentifiable if either $\operatorname{dist(in,~out)~}>1$ or \mid Leak $\mid>1$
- \mathcal{M} is identifiable if in =out and \mid Leak $\mid=0$
- \mathcal{M} is identifiable if $\operatorname{dist}($ in, out $)=1$ and \mid Leak $\mid=0$
- if \mathcal{M} is identifiable with \mid Leak $\mid=0$, then it is identifiable with \mid Leak $\mid=1$

Future Work

- generalize results on tree models to other linear compartmental models
- find more applications for new characterization of coefficients
- consider distinguishability, i.e. the problem of determining whether two or more linear compartmental models fit a given set of measured data
- look for patterns in the singular locus for dividing edges
- consider the problem of determining identifiability when multiple inputs/outputs are present

Table of Contents

(1) General Structural Identifiability

(2) Linear Compartmental Model Background
(3) Tree Models

44 Identifiable Path/Cycle Models

Identifiable Path/Cycle Model Motivating Example

Example

- The model $\mathcal{M}=\left(G,\{1\},\{2\}, V_{G}\right)$ is not identifiable:
- \# parameters $=6$
- max \# coefficients $=5$
- Maybe we can recover combinations of parameters

Identifiable Path/Cycle Model Motivating Example

Example

$$
A=\left(\begin{array}{ccc}
-a_{01}-a_{21} & 0 & 0 \\
a_{21} & -a_{02}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)
$$

Input/Output Equation:

$$
\begin{aligned}
& \quad y_{2}^{(3)}+\left(a_{01}+a_{02}+a_{03}+a_{21}+a_{23}+a_{32}\right) \ddot{y_{2}}+\left(a_{01} a_{02}+a_{01} a_{03}+a_{02} a_{03}\right. \\
& + \\
& \left.+a_{02} a_{21}+a_{03} a_{21}+a_{01} a_{23}+a_{02} a_{23}+a_{21} a_{23}+a_{01} a_{32}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y}_{2} \\
& + \\
& \left(a_{01} a_{02} a_{03}+a_{02} a_{03} a_{21}+a_{01} a_{02} a_{23}+a_{02} a_{21} a_{23}+a_{01} a_{03} a_{32}+a_{03} a_{21} a_{32}\right) y_{2}=\left(a_{21}\right) \dot{u}_{1}+\left(a_{21} a_{03}+a_{21} a_{23}\right) u_{1}
\end{aligned}
$$

Identifiable Path/Cycle Model Motivating Example

Example

$$
A=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{array}\right)
$$

Input/Output Equation:
$y_{2}^{(3)}+\left(-a_{11}-a_{22}-a_{33}\right) \ddot{y_{2}}+\left(a_{11} a_{22}-a_{23} a_{32}+a_{11} a_{33}+a_{22} a_{33}\right) \dot{y_{2}}+\left(a_{11} a_{23} a_{32}-a_{11} a_{22} a_{33}\right) y_{2}$ $=\left(a_{21}\right) \dot{u}_{1}+\left(a_{21} a_{03}+a_{21} a_{23}\right) u_{1}$

This model is an identifiable path/cycle model with identifiable functions

$$
a_{11}, a_{22}, a_{33}, a_{21}, a_{23} a_{32}
$$

Results (Preprint [2])

- Stated necessary and sufficient conditions for a model to be an identifiable path/cycle model based on graph
- Stated results relating identifiable path/cycle models to identifiable models based on reducing the number of leaks
- Expanded several previous result on identifiable cycle models [5, 6]
- Again, the identifiable cycle models all have in $=$ out

Acknowledgments and References I

Thank you to the American Institute of Mathematics for providing a productive work environment. This work was partially supported by the US National Science Foundation (DMS 1615660).

Cashous Bortner, Elizabeth Gross, Nicolette Meshkat, Anne Shiu, and Seth Sullivant. Identifiability of linear compartmental tree models.
In Preparation.

Cashous Bortner and Nicolette Meshkat.
Identifiable paths and cycles in linear compartmental models.
Available from arXiv:2010.07203. Submitted., 2020.
Elizabeth Gross, Heather A. Harrington, Nicolette Meshkat, and Anne Shiu. Linear compartmental models: input-output equations and operations that preserve identifiability.
SIAM J. Appl. Math., 79(4):1423-1447, 2019.
固
Elizabeth Gross, Nicolette Meshkat, and Anne Shiu.
Identifiability of linear compartment models: the singular locus.
preprint, arXiv:1709.10013, 2017.

Acknowledgments and References II

B
Nicolette Meshkat and Seth Sullivant.
Identifiable reparametrizations of linear compartment models.
J. Symbolic Comput., 63:46-67, 2014.

Nicolette Meshkat, Seth Sullivant, and Marisa Eisenberg.
Identifiability results for several classes of linear compartment models.
Bull. Math. Biol., 77(8):1620-1651, 2015.

Cramer's Rule

$$
\mathcal{M}=(G, \text { In, Out, Leak })=\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right)
$$

ODE in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\left(\begin{array}{c}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t) \\
\dot{x_{3}}(t)
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)}_{\text {compartmental matrix } \mathrm{A}}\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

yields

$$
\left.\left(\begin{array}{ccc}
d / d t & 0 & 0 \\
0 & d / d t & 0 \\
0 & 0 & d / d t
\end{array}\right)-\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)\right)\left(\begin{array}{l}
y_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

Cramer's Rule Continued

$$
\begin{gathered}
\mathcal{M}=(G, \text { In, Out, Leak })=\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) . \\
\left(\begin{array}{ccc}
\lambda+a_{21} & -a_{12} & 0 \\
-a_{21} & \lambda+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \lambda+a_{03}+a_{23}
\end{array}\right)\left(\begin{array}{l}
y_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
\end{gathered}
$$

Applying Cramer's Rule

$$
y_{1}(t)=\frac{\operatorname{det}\left(\begin{array}{ccc}
0 & -a_{12} & 0 \\
0 & \lambda+a_{12}+a_{32} & -a_{23} \\
u_{3}(t) & -a_{32} & \lambda+a_{03}+a_{23}
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cc}
\lambda+a_{21} & -a_{12} \\
-a_{21} & \lambda+a_{12}+a_{32} \\
0 & -a_{32}
\end{array} \begin{array}{c}
-a_{23} \\
0+a_{03}+a_{23}
\end{array}\right)}
$$

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y}_{1}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in,out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

Proof idea: Induction on $\left|E_{G}\right|$

- Base case: $\left|E_{G}\right|=0$
- $\mathcal{F}_{n-k-1}^{\text {in,out }}=\emptyset$ so all the d_{k} above are zero
- $(\lambda I-A)_{i, j}=0$ for all $i \neq j$, therefore $\operatorname{det}\left((\lambda I-A)^{\text {in,out }}\right)=0$

Example

Consider $\mathcal{M}=(G,\{3\},\{2\},\{1\})$.

$$
\lambda I-A=\left(\begin{array}{ccc}
\lambda+a_{01} & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)
$$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in,out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{\text {in,out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.
$\lambda I-A=\left(\begin{array}{ccc}\lambda+a_{01}+a_{21} & a_{12} & 0 \\ a_{21} & \lambda+a_{12}+a_{32} & 0 \\ 0 & a_{32} & \lambda\end{array}\right)$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in,out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{\text {in,out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.

$$
(\lambda I-A)^{2,3}=\left(\begin{array}{cc}
\lambda+a_{01}+a_{21} & a_{12} \\
0 & a_{32}
\end{array}\right)
$$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{i n, \text { out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.

$$
(\lambda I-A)^{2,3}=\left(\begin{array}{cc}
\lambda+a_{01}+a_{21} & a_{12} \\
0 & a_{32}
\end{array}\right)
$$

$$
\underset{\widetilde{G}_{3}^{*}}{\stackrel{a_{01}}{\leftrightarrows}} \underset{{\underset{i n}{21}}_{\stackrel{a_{12}}{\leftrightarrows}}^{\stackrel{a}{a_{22}}} \underset{\vdots}{\leftrightarrows}}{\substack{3}}
$$

$\operatorname{det}\left((\lambda I-A)^{2,3}\right)=(-1)^{1+2} a_{12} \operatorname{det}(0)+(-1)^{2+2} a_{32} \operatorname{det}\left(\lambda+a_{01}+a_{21}\right)$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{i n, \text { out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.

$$
(\lambda I-A)^{2,3}=\left(\begin{array}{cc}
\lambda+a_{01}+a_{21} & a_{12} \\
0 & a_{32}
\end{array}\right)
$$

$\operatorname{det}\left((\lambda I-A)^{2,3}\right)=(-1)^{1+2} a_{12} \operatorname{det}(0)+(-1)^{2+2} a_{32} \operatorname{det}\left(\lambda+a_{01}+a_{21}\right)$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{i n, \text { out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.

$$
(\lambda I-A)^{2,3}=\left(\begin{array}{cc}
\lambda+a_{01}+a_{21} & a_{12} \\
0 & a_{32}
\end{array}\right)
$$

$\operatorname{det}\left((\lambda I-A)^{2,3}\right)=(-1)^{1+2} a_{12} \operatorname{det}(0)+(-1)^{2+2} a_{32} \operatorname{det}\left(\lambda+a_{01}+a_{21}\right)$

Proof structure: Induction on $\left|E_{G}\right|$

Theorem

The RHS of the input/output equation of $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ with in \neq out has coefficients $d_{k}=\sum_{F \in \mathcal{F}_{n-k-1}^{\text {in out }}\left(\widetilde{G}_{i}^{*}\right)} \pi_{F}$

- Inductive step
- Laplacian expansion down the in column, i.e. all edges leaving in

$$
\operatorname{det}\left((\lambda I-A)^{\text {in,out }}\right)=\sum_{i n \rightarrow j \in E_{G}}(-1)^{i n+j} a_{j(i n)} \underbrace{\operatorname{det}\left((\lambda I-A)^{\{i n, j\},\{i n, \text { out }\}}\right)}_{\text {RHS of model with less edges }}
$$

Example

Consider $\mathcal{M}=(G,\{2\},\{3\},\{1\})$.

$$
(\lambda I-A)^{2,3}=\left(\begin{array}{cc}
\lambda+a_{01}+a_{21} & a_{12} \\
0 & a_{32}
\end{array}\right)
$$

$$
\tilde{L}_{3}^{*}
$$

$\operatorname{det}\left((\lambda I-A)^{2,3}\right)=(-1)^{1+2} a_{12} \operatorname{det}(0)+(-1)^{2+2} a_{32} \operatorname{det}\left(\lambda+a_{01}+a_{21}\right)$

